Machine learning in practice – from PyTorch model to Kubeflow in the cloud for BigData

О книге

Автор книги - . Произведение относится к жанру программирование. Оно опубликовано в 2020 году. Книге не присвоен международный стандартный книжный номер.

Аннотация

In this book, the Chief Architect of the Department of Architecture and Management of Technical Architecture (Cloud Native Competence Center and the Corporate University of Architects) of Sberbank shares his knowledge and experience with readers in the field of ML. received in the work of the School of Architects and. Author: * guides the reader through the process of creating, learning and developing a neural network, showing in detail with examples * increases horizons, showing how it can take place in BigData from the point of view of the Architect * introduces real models of use in the product environment

Читать онлайн Eugeny Shtoltc - Machine learning in practice – from PyTorch model to Kubeflow in the cloud for BigData


About the book

The book is structured like a textbook – from simple to complex. The reader will be able to:

* in the first three chapters, create the simplest neural network for image recognition and classification,

* in the following – to delve into the device and architecture for optimization,

* further expand the understanding of the company's ecosystem as a whole, in which neural networks operate, as its integral part,

and she interacts with and uses surrounding technologies,

* finish the study by deploying a full-scale production system in the full-cycle cloud.

Almost every chapter begins with the general information needed for the practical part that follows. In the practical part:

* demonstrates the process of preparing the environment, but more often free ready-made cloud services are used,

* demonstrates the writing process when with a parsing of the written and an overview of alternative solutions,

* analysis of the result and the formation of a vision of options for further development.

The book consists of sections:

* Introduction to Machine Learning. This is the only chapter without a practical part to get you started.

understanding the limits of their applicability, advantages over other methods and their general structure for beginners. Also produced

classification of neural networks according to the principles laid down in them, and the selection of a group, which will be discussed in the book.

* Basics for writing networks. It provides the basic knowledge necessary to write the first network in PyTorch, familiarity with the development environment

Jupyter in the Google Colab cloud service, which is a simplified version of the Google ML cloud platform, running the code in it and using the PyTorch framework for writing neural networks.

* We create the first network. The author demonstrates for the reader's practice how to create a simple neural network on PyTorch in

Colab with a detailed analysis of the written code, training it on the MNIST image dataset and launch it.

* Improving the recognition of the neural network on complex images. Here the author demonstrates to the reader not practice

training and prediction of neural networks for color pictures, methods to improve the quality of network predictions. Understands in detail


Рекомендации для вас