Data Science для карьериста

О книге

Авторы книги - . Произведение относится к жанрам поиск работы / карьера, программирование, зарубежная компьютерная литература. Оно опубликовано в 2021 году. Международный стандартный книжный номер: 978-5-4461-1734-5.

Аннотация

Все мы хотим построить успешную карьеру. Как найти ключ к долгосрочному успеху в Data Science? Для этого понадобятся не только технические ноу-хау, но и правильные «мягкие навыки». Лишь объединив оба этих компонента, можно стать востребованным специалистом.Узнайте, как получить первую работу в Data Science и превратиться в ценного сотрудника высокого уровня! Четкие и простые инструкции научат вас составлять потрясающие резюме и легко проходить самые сложные интервью. Data Science стремительно меняется, поэтому поддерживать стабильную работу проектов, адаптировать их к потребностям компании и работать со сложными стейкхолдерами не так уж и легко. Опытные дата-сайентисты делятся идеями, которые помогут реализовать ваши ожидания, справиться с неудачами и спланировать карьерный путь.

В формате PDF A4 сохранен издательский макет.

Читать онлайн Эмили Робинсон, Жаклин Нолис - Data Science для карьериста


Переводчик А. Попова


© ООО Издательство "Питер", 2021

© 2020 by Emily Robinson and Jacqueline Nolis. All rights reserved.

© Перевод на русский язык ООО Издательство «Питер», 2021

© Издание на русском языке, оформление ООО Издательство «Питер», 2021

© Серия «Библиотека программиста», 2021

Предисловие

«Как мне устроиться на такую же работу, как у вас?»

Нам как опытным дата-сайентистам постоянно задают этот вопрос. Порой он звучит прямо, а в других случаях нас спрашивают о том, какие решения мы принимали в течение карьерного пути, чтобы оказаться на этом месте. На самом деле люди, задающие подобные вопросы, постоянно испытывают трудности, так как ресурсов, объясняющих, как встать на путь Data Science или расти профессионально в этом направлении, очень мало. Многие дата-сайентисты ищут помощь по вопросам карьеры, но зачастую не находят внятных ответов.

Хотя в блогах мы постили тактические советы о том, что делать в определенные моменты работы в Data Science (DS), мы также решили разобраться с отсутствием адекватного текста, описывающего весь карьерный путь в этой области от начала до конца. Эта книга призвана помочь тысячам людей, которые слышат о Data Science и о машинном обучении, но не знают, с чего начать, а также тем, кто уже занят в этой области и хочет понять, как продвинуться по карьерной лестнице.

Мы были рады возможности поучаствовать в создании этой книги. Нам обеим казалось, что наш опыт и точки зрения дополняли друг друга и помогли в написании лучшей книги для вас. Мы – это:

• Жаклин Нолис (Jacqueline Nolis). Я получила степень бакалавра и магистра математических наук, а также кандидатскую степень в области исследования операций. Когда я начинала работать, такого понятия, как Data Science (DS), еще не было, и мне пришлось выстраивать свой карьерный путь одновременно с попытками определения этой области. Теперь я работаю консультантом и помогаю компаниям растить команды, занимающиеся DS.

• Эмили Робинсон (Emily Robinson). Я получила степень бакалавра в области теории принятия решений и степень магистра менеджмента. Окончив трехмесячный курс по Data Science в 2016 году, я начала работать в этой сфере, специализируясь на A/B-тестировании. Сейчас я работаю старшим дата-сайтентистом в компании Warby Parker и занимаюсь некоторыми проектами компании.


Рекомендации для вас