Гид по промпт-инжинирингу

О книге

Авторы книги - . Произведение относится к жанру современная проза. Оно опубликовано в 2024 году. Книге не присвоен международный стандартный книжный номер.

Аннотация

В эпоху стремительного развития технологий искусственного интеллекта и машинного обучения промпт-инжиниринг становится ключевым навыком для специалистов в различных областях. Эта книга представляет собой практическое руководство, которое поможет читателям освоить основы создания эффективных промптов для взаимодействия с языковыми моделями и чат-ботами.

«Гид по промпт-инжинирингу» станет полезным ресурсом всех, кто стремится использовать возможности искусственного интеллекта для решения реальных задач.

Читать онлайн Олеся Порхало, Антон Юрьевич Кивалов - Гид по промпт-инжинирингу


Введение

В эпоху стремительного развития искусственного интеллекта и больших языковых моделей (LLM (Large Language Model)) промпт-инжиниринг становится важным инструментом для достижения точных и релевантных результатов.

Этот гид посвящен основным принципам и методам промпт-инжиниринга, показывая, как его применение может помочь компаниям эффективно решать сложные задачи и достигать поставленных целей.

Мы рассмотрим примеры успешной практики в различных отраслях и поделимся советами по внедрению промпт-инжиниринга в ваш бизнес.

1. Промпт-инжиниринг

ПРОМПТ-ИНЖИНИРИНГ

это дисциплина, фокусирующаяся на создании и оптимизации текстовых подсказок (промптов) для больших языковых моделей (LLM) с целью получения максимально точных, релевантных и креативных результатов, соответствующих задачам пользователя.

Цель промпт-инжиниринга – управлять поведением модели, направляя её на конкретные задачи или требования.


Промпт-инжиниринг может включать в себя следующие шаги:

1. Определение цели: четкая формулировка задачи или цели, которую нужно 8 решить с помощью модели ИИ. Это может быть генерация текста, ответ на вопросы, перевод и другие задачи.

2. Разработка промптов: создание конкретных и ясных промптов, которые описывают, что требуется от модели. Формулировка должна быть точной и понятной, чтобы модель могла правильно интерпретировать запрос.

3. Учет контекста: включение необходимой контекстуальной информации в промпт помогает модели дать более точный и релевантный ответ.

Это может быть дополнительный текст или данные, связанные с основным запросом.

4. Тестирование промптов: проверка различных вариантов промптов для оценки их эффективности. Тестирование позволяет понять, как разные формулировки влияют на ответы модели.

5. Анализ результатов: после тестирования проводится анализ ответов модели на различные промпты. Оценивается точность, релевантность и соответствие ответов заданной цели.

6. Оптимизация промптов: на основе анализа результатов вносятся изменения в промпты. Это может включать уточнение формулировок, добавление или удаление контекста, а также корректировку порядка или структуры информации для улучшения качества ответов.

7. Итеративное улучшение: процесс тестирования и оптимизации продолжается до достижения желаемого уровня качества ответов модели. Итеративный подход позволяет постепенно улучшать результаты и находить наилучшие решения.


Рекомендации для вас