Математика шахматной доски

О книге

Автор книги - . Произведение относится к жанрам учебная литература, математика. Год его публикации неизвестен. Международный стандартный книжный номер: 9785005622655.

Аннотация

Задачи, связанные с шахматной доской, обсуждаются на математических кружках издавна. Наверное, одной из причин этого является одновременная обиходная простота шахмат (все видели доску и большинство даже слышали, как ходят фигуры) и их невероятная сложность (гроссмейстеры учатся годами, чтобы выигрывать в этой игре) – этот дуализм, который делает шахматную доску, возможно, наилучшим объектом для исследования на первом году кружка, когда детям ещё чужды абстракции и важны связи с осязаемым миром.

Читать онлайн Александр Киселев - Математика шахматной доски


© Александр Сергеевич Киселев, 2022


ISBN 978-5-0056-2265-5

Создано в интеллектуальной издательской системе Ridero

Вступление

Взаимоотношения шахмат и математики достойны если не целого романа-эпопеи, то уж как минимум объёмной повести. Математики знают, что в шахматах, как и в любой другой игре с конечным числом позиций, существует выигрышная стратегия для одного из игроков – за это шахматистам впору ненавидеть математиков. Однако общее число всех возможных позиций настолько огромно, что даже современным компьютерам не под силу провести их полный перебор – и за это математикам уже впору возненавидеть шахматистов (или, вернее, того, кто эту будоражащую умы игру изобрёл).

Тем не менее, современные шахматные программы уже стабильно обыгрывают игроков-людей, даже не имея возможности перебрать все варианты – ведь и частичный перебор машине удаётся намного лучше, чем человеку. Но, несмотря на значительные успехи компьютеров, шахматы вполне живы и активно развиваются, как вид спорта.

Многие известные шахматисты (например, А. Е. Карпов или М. Н. Таль) в юности проявляли математические способности и выигрывали математические олимпиады, а М. М. Ботвинник и вовсе был доктором техническим наук и крупным специалистом по электротехнике. Многие известные математики (например, академик А. А. Марков) и физики (например, академик П. Л. Капица) достаточно хорошо играли в шахматы.

Задачи, связанные с шахматной доской, обсуждаются на математических кружках1 издавна. Наверное, одной из главных причин этого является одновременная обиходная простота шахмат (все дети хоть раз видели доску и большинство даже слышали, как ходят основные фигуры) и их невероятная сложность (ведь гроссмейстеры учатся годами, чтобы научиться выигрывать в этой игре) – этот дуализм, который и делает именно шахматную доску, возможно, наилучшим объектом для исследования на первом году математического кружка, в котором детям ещё чужды абстракции и так важны связи с реальным осязаемым миром.

Задачи, которые обсуждаются в этой книге, делятся на два типа: первый будет связан с разрезанием самой доски и, как правило, вообще не использует магию шахмат (хотя там иногда нелишне бывает вспомнить о раскраске, характерной для шахматной доски), а второй связан с шахматными фигурами, непосредственно с тем, как они ходят и бьют.


Рекомендации для вас