В современном мире машинное обучение играет все большую и большую роль в повседневной жизни, бизнесе и научных исследованиях. Умение анализировать и использовать данные становится ключевым фактором успеха для организаций и профессионалов. Эта книга призвана стать вашим комплексным руководством по машинному обучению, особенно в отношении анализа табличных данных, которые являются наиболее распространенным типом данных в бизнесе.
Данная книга будет полезна как бизнесу, руководителям проектов по машинному обучению, так и лицам, интересующимся машинным обучением. Она предоставляет широкий обзор методов и подходов, используемых для анализа и прогнозирования на основе табличных данных, включая классические алгоритмы машинного обучения, ансамблирование, автоматическое машинное обучение (AutoML) и применение нейронных сетей.
Книга разделена на несколько глав, каждая из которых посвящена определенному аспекту машинного обучения. Вы узнаете о предобработке данных, отборе признаков, разработке и валидации моделей, а также о внедрении и мониторинге решений на основе машинного обучения в реальной среде. Кроме того, в книге рассматриваются важные вопросы этики и соответствия законодательным требованиям в контексте машинного обучения.
Благодаря практическим примерам и пошаговым инструкциям, вы сможете глубже погрузиться в каждый этап разработки проекта машинного обучения и получить полезные навыки для своей карьеры или бизнеса. Независимо от вашего опыта или роли, вы найдете ответы на свои вопросы, а также полезные советы и рекомендации по применению машинного обучения в различных областях.
Мы надеемся, что эта книга станет вашим надежным спутником на пути к успешному освоению и применению машинного обучения, и поможет вам создавать инновационные и эффективные решения для вашего бизнеса, проектов и личного развития.
Книга предназначена для людей с разным уровнем опыта в области машинного обучения: от новичков до опытных профессионалов. В каждой главе представлены материалы как для начинающих, так и для более продвинутых читателей, что позволяет каждому найти подходящий для себя уровень сложности и глубину изложения.
Табличные данные – это распространенный вид структурированных данных, представленных в виде таблицы, состоящей из строк и столбцов. Строки обычно соответствуют отдельным объектам или наблюдениям, а столбцы представляют различные переменные или характеристики объектов. Табличные данные могут содержать числовые значения, категориальные значения, текст, даты и другие типы информации.