Эконометрические оценки. Учебное пособие

О книге

Автор книги - . Произведение относится к жанрам книги о компьютерах, математика, прочая образовательная литература. Год его публикации неизвестен. Международный стандартный книжный номер: 9785005530646.

Аннотация

Каждое новое название грозит заказчику повышением стоимости услуг: статистика, математическая экономика, эконометрика, бизнес-аналитика, наука о данных, машинное обучение… Все перечисленные технологии используют метод наименьших квадратов (классический регрессионный анализ), который мы и будем рассматривать – в самых разных видах. Нас ожидает парная и множественная, линейная и нелинейная регрессия, разное количество входов и выходов модели, учёт качественных и количественных признаков.

Читать онлайн Валентин Арьков - Эконометрические оценки. Учебное пособие


© Валентин Юльевич Арьков, 2021


ISBN 978-5-0055-3064-6

Создано в интеллектуальной издательской системе Ridero

Предисловие

Данное учебное пособие основано на серии лекций, прочитанных автором в дистанционном режиме. Видеозаписи лекций доступны на канале автора на Youtube. Ссылки на видеоролики имеются в конце данного пособия.

1. Введение

Наш предмет называется ЭКОНОМЕТРИКА. Существует эконометрика достаточно давно. На Западе – уже десятки лет преподаётся как самостоятельная дисциплина. В России эконометрика «появилась» лет двадцать-тридцать тому назад – как следование западной моде.

Смысл в том, что 30 лет назад это была какая-то абстрактная теория, непонятное ответвление статистики. На сегодняшний день это работающие программы и технологии. Когда мы слышим про загадочные «большие данные» – Big Data, про анализ больших данных или про науку о данных – Data Science – за этим скрывается то, что как раз и изучается в курсе «Эконометрика».

Мы с вами будем разбирать очень практические вещи. Соответственно, и в лекциях, и на лабораторных работах у вас будет именно практическая сторона материала.

Регрессия

Весь предмет эконометрики сводится к задаче регрессии.

У нас имеется некоторое количество данных, которые условно можно назвать «иксы» и «игреки». Их можно изобразить в виде точек. Это могут быть люди, станки, квартиры, предприятия, страны. Имеем массив числовых значений и точек на графике. По этим точкам нужно В СРЕДНЕМ провести какую-нибудь линию, см. рис.


Рис. Регрессия – линия в среднем по точкам


Это может быть прямая, или кривая, или даже ломаная.

Если нанести точки на плоском графике и нужно построить прямую линию, то достаточно приложить линейку и провести линию. Главное, что это должно в среднем. Это значит, что линия может вообще не пройти ни по одной точке. Она пройдет там, где густо. Там, где много точек.

Такая технология называется РЕГРЕССИЯ.

На занятиях по бизнес-аналитике и статистике мы с разных сторон рассмотрим историю и разберём данный раздел.

Буквально слово «регрессия» означает «движение назад». В большинстве случаев это действительно возвращение или противоположность прогрессу и т. п. – кроме нашей ситуации. В эконометрике и в статистике слово «регрессия» означает «провести по точкам подходящую линию». По сути это попытка получить очень упрощенную закономерность из большого количества данных.


Рекомендации для вас