Силы тяготения внутри обруча, сферы и между двух точек

О книге

Автор книги - . Произведение относится к жанрам физика, математика, астрономия. Оно опубликовано в 2021 году. Книге не присвоен международный стандартный книжный номер.

Аннотация

Рассмотрены силы, действующие на пробное тело внутри обруча, полой сферы и между двумя массивными точками. По мере удаления от центра системы сила притяжения растёт от нуля до некоторого максимума. Утверждение об отсутствии сил тяготения внутри полой сферы является ошибочным. The forces acting on a test body inside a hoop, a hollow sphere, and between two massive points are considered. With distance from the center of the system, the force of attraction grows from zero to a certain maximum. The statement about the absence of gravitational forces inside the hollow sphere is erroneous.

Читать онлайн Петр Путенихин - Силы тяготения внутри обруча, сферы и между двух точек


1. Притяжение тела внутри обруча

Считается, что тело внутри полой сферы не испытывает сил притяжения с её стороны. Рассмотрим такую же ситуацию в плоской форме – силу притяжения тела внутри полого цилиндра. Более того, будем считать, что высота цилиндра равна нулю. Фактически это круг с круглым отверстием внутри.

Очевидно, что ширина этой круговой полосы также качественно не влияет на результаты вычислений, поэтому будем считать её также равной нулю, то есть, рассмотрим очень тонкий массивный обруч.

Для точного определения сил, действующих на тело внутри обруча, рассмотрим дифференциал массы обруча, массу каждого элементарного, бесконечно малого его участка, которая равна



Определим расстояние r между массой m и дифференциальным элементом





Рис.1.1.Определение силы притяжения тела внутри обруча.


С учетом m = 1, ρ = 1 и вычисленного квадрата радиуса сила притяжения равна



Нас интересует сила, направленная вдоль оси X. Определяем её из соотношения подобных треугольников



Заменим Rx на долю от R>0, то есть, Rx = kR>0, где, очевидно, k = 0…1



Вычисляем значение силы для каждого значения R>x или значения k. Очевидно, что ни одно из значений силы, кроме k = 0, не равно нулю. При этом значении интеграл упрощается до элементарного



Вероятно, значение силы тем больше, чем ближе R>x к R>0. При этом следует ожидать даже бесконечно больших значений при значении k = 1



В точке φ = 0 подынтегральная функция обращается в неопределённость, деление нуля – dφ на ноль. Попробуем разрешить эту неопределённость. Поскольку мы производим численное интегрирование, то эта точка соответствует конечным, компьютерным значениям дифференциала и функции φ = dφ =0, то есть, неопределённость 0/0



Попробуем разрешить неопределённость аналитически. Вблизи этой точки дифференциал dφ и аргумент φ одинаково стремятся к нулю, поэтом обозначим их одной переменной. Найдём предел отношения подынтегральной функции



Известно, что предел отношения функций равен пределу отношения их производных



Повторим процедуру замены функций на их производные



Ранее мы извлекли функцию из-под корня, теперь возвращаем



Казалось бы, при нулевом расстоянии между фрагментом обруча и материальной точкой m сила притяжения должна быть равна бесконечность. Однако мы рассматриваем одновременно с уменьшением дистанции и уменьшение длины этого фрагмента, что и привело к конечному значению неопределённости. Другим объяснением может служить то, что


Рекомендации для вас