Вначале рассчитаем динамичесчкое давление жидкости или газа плотности ρ на боковую поверхность герметически закрытого цилиндрического сосуда высотой h с радиусом оснований r, вращающегося стационарно и равномерно с угловой скоростью ω вне поля тяготения как твердое тело вокруг оси симмерии (см. Рис.1)
Для расчета давления разобьем цилиндр на совокупность полых цилиндров одинаковой высоты h толщиной стенок dr, во много раз меньший r, тогда можно считать, что все точки выделенного полого цилиндра находятся на расстоянии r от оси. В выделенном объеме dv = 2πrdrh заключена жидкость или газ массой dm = ρ2πhrdr. Этой массе жидкости сообщает центростремительное ускорение сила давления слоя, находящегося на расстоянии r + dr от оси. Согласно второму закону Ньютона df = dmdυ/dt, т.к. dυ/dt = ωr.
Динамическое давление, производимое выделенным слоем жидкости или газа на внешнюю боковую поверхность полого цилиндра dp = df/ds, где ds= 2πrh. – площадь боковой поверхности этого полого цилиндра.
С учетом всех указанных выше равенств находим элементарное давление:
dp=ρωrdr (1)
Суммарное давление, производимое всеми слоями вращающейся жидкости найдем, взяв определенный интеграл:
p = ρωrdr = 0,5ρ ωr. (2) Или, заменив в полученном выражении поизведение угловой скорости на радиус окружности через линейную скорость υ = ωr имеем:
р = 0,5ρυ. (3)
Выражения (2) и (3) выведены для случая, когда жидкость или газ целиком заполняют сосуд. Рассчитаем давление жидкости или газа толщиной потока. Рассмотрим два разных случая а) частицы вращаются с одинаковой угловой скоростью, тогда в выражении (2) следует изменить нижнюю границу интегрирования:
р = ρωr dr = ρω0,5 (r+ r) (r- r). (4)
Итак, в этом случае гидродинамическое давление прямо пропорционально плотности, квадрату угловой скорости, толщине потока (r- r) и радиусу кривизны среднего слоя – 0,5 (r+ r).
Если частицы потока имеют одинаковую скорость, например, совершая отражение, давят на лопасти турбины Пельтона при трогании с места, тогда в выражении (1) угловую скорость выразим