Логика для всех. От пиратов до мудрецов

О книге

Автор книги - . Произведение относится к жанрам учебная литература, детская познавательная и развивающая литература, математика. Оно опубликовано в 2016 году. Международный стандартный книжный номер: 978-5-4439-3022-0.

Аннотация

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).

В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.

Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.

Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Читать онлайн Инесса Раскина - Логика для всех. От пиратов до мудрецов


Предисловие

– Когда я беру слово, оно означает то, что я хочу, не больше и не меньше, – сказал Шалтай презрительно.

Лъюис Кэрролл. «Алиса в Зазеркалье»

Этот выпуск является продолжением книги «Логические задачи», изданной ранее в серии «Школьные математические кружки». Он состоит из десяти занятий, различных по цели, форме и уровню сложности.

Первые пять, а также восьмое занятие представляют собой элементарное введение в формальную логику. Тематика стандартна: высказывания (в том числе общие и частные) и их отрицания, закон исключенного третьего, союзы «и» и «или», следствие и равносильность. Уровень сложности и стиль изложения первых пяти и большей части восьмого занятий рассчитан в первую очередь на учеников 5–7 классов. Почти во все занятия (кроме второго) включены задачи, связанные с другими разделами математики. Особое внимание уделяется умению отличать решенную задачу от нерешенной, в частности, применимости примера и контрпримера. Активно используются графические иллюстрации. Отдельные задачи, требующие от пятиклассников дополнительных знаний (например, признаков делимости), могут быть ими пропущены или заменены аналогичными из раздела дополнительных задач.

Надеемся, что материалы первой части книжки кому-то из учителей пригодятся при подготовке уроков для всего класса, а не только занятий кружка.

Вторая половина книжки построена на решении постепенно усложняющихся задач и адресована кружковцам второго и более года обучения.

Шестое занятие развивает навык рассуждать в соответствии с законами логики, сформулированными на предыдущих занятиях. Его можно проводить после них, а для подготовленных учащихся – и вместо них.

Седьмое занятие посвящено доказательству от противного. Многие школьники впервые встречаются с методом от противного на уроках геометрии. Результат известен: метод усваивается на уровне магического заклинания, применяемого для умиротворения учителя этого бессмысленного и беспощадного предмета. Хотелось бы надеяться, что встреча с методом от противного в предложенном мини-курсе логики окажется более естественной и плодотворной. Рекомендуем провести такое занятие в конце шестого класса или в начале седьмого, незадолго до первого применения метода в геометрии или хотя бы вскоре после него. Следующий подходящий момент связан с доказательством иррациональности квадратного корня из 2 в восьмом классе. Предложенные задачи не слишком просты и для большинства восьмиклассников.


Рекомендации для вас